${{amount}} USD

my cart

Free Shipping On world wide

  • HOME
  • PRODUCTS
  • IN THE NEWS
  • SPECTRUM BLOG
  • WEB SPECTRUM VIEWER

Spectrum Blog

AWS-3 Auction Results - Spectrum Grid Mon, Feb 02, 2015

AllNet's Spectrum Ownership Analysis Tool has been updated to include all of the AWS-3 auction results in all of its Analysis Modules.  Below in the Spectrum Grid Module, you can see which carrier acquired the spectrum rights for each  of the uplink channels in the Top 5 CMA markets.


The screenshot of the downlink channels also provides a view into where Dish's AWS-4 spectrum fits with their new AWS-3 spectrum.



Enhanced Market Level Reports Tue, Nov 04, 2014

The November 2014 Spectrum Ownership Analysis Tool includes several enhancements to the Market Level Reports.  Market Level Reports are available for Cellular Market Areas (CMA) and Economic Areas (EA).  Initially these market level reports only included spectrum depth values for each carrier by spectrum band.  With this update, you can see each selected carrier's total spectrum holdings, their spectrum holdings in each of the primary band classes (Low Band, Mid Band, and High Band), and their spectrum holdings in each spectrum band.

The band classes are defined as follows:

  • Low Band
    • 700MHz
    • Cellular/SMR
  • Mid Band
    • L Band/S Band (AWS-4)
    • AWS-1
    • PCS
    • AWS -3 (when the auction is complete)
  • High Band
    • WCS
    • EBS/BRS
The user can select 8 carriers to be displayed in these reports from the 580 carriers available in the Spectrum Ownership Analysis Tool.  For the examples below, we have included most of the national wireless carriers as well as a few regional carriers.

The spectrum depth values for each of these reports are determined from the county-level spectrum ownership information in the Spectrum Ownership Analysis Tool using a population-weighted average.  This means that each of the county-level spectrum depth values is multiplied by a ratio of the county's population divided by the market population.  This provides for a higher weighting for spectrum depth in higher population counties.

CMA Market Report - Total Spectrum Depth and Spectrum Depth by Band Class


CMA Market Report - Spectrum Depth by Frequency Band


AWS - 3 Auction Tools Wed, Oct 15, 2014

In support of the upcoming auctions we have included the available AWS3 channels in our Spectrum Grid worksheet and we have added both a CMA and EA Market Report.  
In the Spectrum Grid you can see the primary spectrum owner for any spectrum band, including the adjacent AWS1 band, at a county level.  The CMA Market Report displays the spectrum holdings for 8 selected carriers utilizing the Cellular Market Area (CMA) geographic boundaries. The EA Market Report displays the spectrum holdings for 8 selected carriers utilizing the Economica Area (EA) geographic boundaries. For both of these reports, AllNet's county-level data is population weighted averaged to either the CMA or EA markets.

Spectrum Grid (AWS3 Portion)
CMA Market Report 
EA Market Report 

Will Rural America get a 3rd National Wireless Provider? Wed, Jul 16, 2014

The news yesterday that T-Mobile and Sprint are forming a Joint Venture to buy 600MHz Broadcast Incentive Auction spectrum shows a shift in the way that both Sprint and T-Mobile look at the places that aren't  in non-Top 100 markets, along Interstates, or along US Highway routes.  

Will the T-Mobile/Sprint JV use this low band spectrum to fill out the areas that they rely on partners (primarly AT&T and Sprint) to provide their coverage? 

Virtually all of T-Mobile's recently acquired 700MHz A band spectrum is in large cities (see my post from 11/2013) and Sprint has been reluctant to add towers in rural areas to utilized the 7MHz of low band SMR spectrum that they are using elsewhere for their Spark service.

Sprint's Current Coverage

T-Mobile Coverage (Light Pink indicates Partner Coverage)


T-Mobile has signaled with the FCC that they are concerned about reasonable roaming rates and Sprint is clearly in the same position with Verizon, needing Verizon's coverage to offer true nationwide coverage.  On the other side of the coin, T-Mobile indicates that they already cover 96% of the US population, leaving about 12.5 million POPs to be covered with this new low band spectrum.

For both T-Mobile and Sprint a build out in these uncovered areas would reduce their risk of of significant rate increases or roaming service elimination with Verizon and AT&T, but these towers would be much less efficient than towers elsewhere in their collective networks.  Obviously they would share the deployment costs and operating cost, but with these towers would have serve a low number of POPS (population)/Tower which is a standard industry metric on capital efficiency for deployed towers.

How would this affect Sprint's recent regional partners?
Sprint Regional Partners
Building out this spectrum would put Sprint in direct competition with these recent formed partners.  These regional partners may also participate in the auction acquiring more spectrum.  Each of these partners only needs low band spectrum for wide area coverage, and there are ample amounts of mid-band (PCS/AWS) spectrum in these areas for these regional partners to uses as capacity grows.



National Carrier LTE Channels - Top 100 CMA Markets Mon, Mar 03, 2014

AllNet Labs is now offering a monthly spectrum report summarizing the LTE Channels for the National Carriers (Verizon, AT&T, Sprint, and T-Mobile).  To develop this report, AllNet Labs takes the spectrum outputs at a county level from its Spectrum Analysis Tool and applies a county population weighting before averaging all of the counties within a Cellular Market Area (CMA).  Data is available for all 733 CMA markets, but the standard report is formatted for the 100 most populated CMA markets.  This report is delivered as an Excel spreadsheet, with both summary and detailed views.  In the summary view (Figure 1), only the size and quantity of LTE channels for each carrier are displayed. This report evaluates each carrier’s complete spectrum holdings to determine the size and quantity of available LTE channels.  The report also assumes that the largest channel would be utilized rather than multiple smaller channels (e.g. a 20MHz channel is assumed rather than 2 – 10MHz channels).
Figure 1
By selecting the [+] in the upper margin to the right of AT&T’s 10x10 column we can reveal t AT&T’s LTE channel distribution by band.  This expanded view is seen below as Figure 2. 

Figure 2
AllNet Labs has added a proposed transaction data set to the Spectrum Analysis Tool.  With this data set, we are able to simplify hundreds of license transfers at the FCC into the net effect for wireless operators.  All of the transactions are captured from the FCC Daily Digest and each license is updated at the callsign, county, and frequency levels.  Using this proposed transaction data; a matrix of each carrier’s future LTE Channels is created (Figure 3). 

Figure 3
By selecting the [+] signs in the upper margin, a carrier’s spectrum holdings by band can be detailed.   (Figure 4).

Figure 4
The last matrix in this report summarizes the differences between the proposed LTE Channels and the current LTE Channels.  This highlights areas that are affected by proposed transactions.  The example shown uses data from the December 2013 Spectrum Analysis Tool.    The proposed transactions for December 2013 were transactions announced prior to 12/1 which included AT&T’s purchase of Leap as well as many other minor transactions.  The effect of that transaction as well as other more minor transactions is easily seen in Figure 5, with AT&T increasing their LTE channel size from 5x5 to 10x10 in Chicago.

Figure 5
To see the changes at the spectrum band level of detail, select the [+] in the upper margin as described before.  As seen in Figure 6, AT&T’s increase in 10x10 channels in Chicago was the result of an increase in the PCS spectrum band.

Figure 6
AllNet Lab's Spectrum Analysis Tool is an Excel based product which allows users to visualize and analyze the current spectrum ownership for all of the mobile carrier and satellite frequency bands at a county level for all 50 states and US territories.  The Spectrum Analysis Tool includes 15 color-coded spectrum holders and over 600 additional identified carriers.  More information can be found at www.allnetlabs.com.


National Carrier Spectrum Holdings - Top 100 CMA Markets Sat, Feb 22, 2014

AllNet Labs is now offering a monthly spectrum report summarizing the spectrum holdings for the National Carriers (Verizon, AT&T, Sprint, and T-Mobile).  To develop this report, AllNet Labs takes the spectrum outputs at a county level from its Spectrum Analysis Tooland applies a county population weighting before averaging all of the counties within a Cellular Market Area (CMA).  Data is available for all 733 CMA markets, but the standard report is formatted for the 100 most populated CMA markets.  This report is delivered as an Excel spreadsheet, with both summary and detailed views.  In the summary view (Figure 1), only the total spectrum holdings for each carrier are displayed.
Figure 1
By selecting the [+] in the upper margin to the right of AT&T spectrum holdings we can reveal  AT&T’s spectrum distribution by band.  This expanded view is seen below as Figure 2.
Figure 2
AllNet Labs has added a proposed transaction data set to the Spectrum Analysis Tool.  With this data set, we are able to simplify hundreds of license transfers at the FCC into the net effect for wireless operators.  All of the transactions are captured from the FCC Daily Digest and each license is updated at the callsign, county, and frequency levels.  Using this proposed transaction data, a matrix of the national carrier’s proposed spectrum holdings is created (Figure 3).  
Figure 3
 By selecting the [+] signs in the upper margin, a carrier’s spectrum holdings by band can be detailed.   (Figure 4).
Figure 4
The last matrix in this report summarizes the differences between the proposed spectrum holdings and the current spectrum holdings.  This highlights areas that are affected by proposed transactions.  The example shown uses data from the December 2013 Spectrum Analysis Tool.    The proposed transactions for December 2013 were transactions announced prior to 12/1 which included AT&T’s purchase of Leap as well as many other minor transactions.  The effect of that transaction as well as other more minor transactions is easily seen in Figure 5, with AT&T increasing their spectrum holdings in 6 of the 15 CMA markets listed.
Figure 5
 To see the changes at the spectrum band level of detail, select the [+] in the upper margin as described before.  As seen in Figure 6, AT&T’s increase in spectrum was the result of increases in AWS and PCS spectrum, which matches the known spectrum that Leap will bring to AT&T.
Figure 6
 AllNet Lab's Spectrum Analysis Tool is an Excel based product which allows users to visualize and analyze the current spectrum ownership for all of the mobile carrier and satellite frequency bands at a county level for all 50 states and US territories.  The Spectrum Analysis Tool includes 15 color-coded spectrum holders and over 600 additional identified carriers.  More information can be found at www.allnetlabs.com.


700 MHz A Block Owners (Map) and Top 20/50 Analysis Mon, Nov 25, 2013

With the recent industry press indicating that T-Mobile was positioning its self to purchase Verizon's 700 MHz A Block, I decided to dive into the Spectrum Analysis Tool to see what kind of geographic area Verizon's licenses would provide T-Mobile with low band spectrum.  
Clearly it would not be a spectrum purchase to provide coverage in rural areas since it doesn't address the rural areas in the western United States with the exception of western Colorado.  Looking at it on a Cellular Market (CMA) basis, this spectrum would provide T-Mobile with low band spectrum in all 15 of the Top 20 markets but only 25 of the Top 50 markets.  This includes both the Verizon spectrum and T-Mobile's 700MHz spectrum acquired from MetroPCS.

To acquire the remaining 700 MHz A block spectrum in the Top 20 markets, T-Mobile will need to be talking to:

Leap - Chicago
US Cellular - St. Louis
McBride Spectrum - Pittsburg
Cox - San Diego
Vulcan - Seattle


LTE Band Class Updates Tue, Nov 19, 2013

As I was completing my research for an upcoming blog on LTE Carrier Aggregation, I found that my previous LTE Band Class reference sheet was missing some of the more recent Band Class updates, so I decided to share my new reference document with a few comments.

FDD Band Classes:



The first notable band class addition in Band 30.  This band class creates a definition for FDD operation in the WCS (2.3GHz) band which was previously defined only for TDD operation.
From the Spectrum Grid view of the Spectrum Ownership and Analysis Tool, you can see that Band 30 does not include the 5MHz channels that AT&T purchased to essentially become guard bands for the Satellite Audio guys.  This will provide AT&T with a 10x10 LTE channel on a market by market basis, as they resolve the remaining ownership issues in the WCS band.

The next two band classes are not new, but I previously skipped over these band classes because I didn't fully understand their frequency breaks.

Band 26
Previously I thought this was a specific band for Sprint  IDEN operation that is adjacent to the cellular band.  This is the band where Sprint is placing their 2nd LTE channel (5 MHz) and a CDMA channel (1.23 MHz). Looking at the frequencies in detail, the band class covers the IDEN spectrum and the adjacent cellular spectrum.

This is similar to Sprint's Band 25 which includes all of the PCS band plus their G block spectrum (but not the H block).


So you would think that all of the North American carriers could standardize to Band 25 for PCS operation and Band 26 for Cellular. Using the latest iPhone 5s LTE band support,
you can see the Verizon, T-Mobile, and AT&T iPhone's support Band 2 and 25 for PCS, but only the cellular band (Band 5).  Sprint iPhone 5s includes,
both Band 2 and 25 for PCS and Band 5 and 26 for cellular.

Band 10:
This is referenced as the AWS extended band and you can note from above that it is not currently applied to smartphones like the iPhone 5s.  This band class seems to be a preparation for the future use of the AWS-2 and AWS-3 spectrum and the government shared use band that are both adjacent to the existing AWS spectrum band.  Here is how the downlink looks in the Spectrum Ownership Analysis Tool:
Note that Band 10 does not cover the entire band contemplated for AWS-3, nor does it include Dish's Band 23.  For the uplink:

This again depicts that Band 10 is not currently set to include the entire shared government opportunity.

TDD Band Classes:
Here is the reference sheet the TDD band classes.

On this reference sheet I hadn't looked closely at band classes 35, 36, and 37.  I had always focused on the 2.3GHz and 2.5GHz as the only bands that were designated for TDD support in North America.  These three band classes create 140MHz block of spectrum that could be for TDD deployment.  Here is how these bands appear in the Spectrum Ownership Analysis Tool:
I'm not sure what the history is on these band classes, but they would support TDD operation in both the PCS uplink and downlink bands as well as in the 20 MHz between the bands.  Since the PCS frequencies are highly deployed, I would consider it very unlikely to see TDD systems in this band in the near future, and I doubt that the PCS band is authorized for TDD operation.  It will be interesting to see whether any of the wireless carriers begin to look this direction.  With Sprint stepping out of the H block auction, they seem to be signalling that TDD operation is more important to them and the Band 37 block (including Sprint's G block) could be the reason why Dish is pushing forward in the H block auction.  Please comment if you are aware why the 3GPP has included these 3 TDD band classes.

Verizon St Louis Spectrum Purchase, Carrier Aggregation, and Competitive Landscape Wed, Nov 06, 2013

It is interesting to look at the details of Verizon's spectrum purchase from US Cellular in the St Louis market area (EA-96).   Many industry sources talk about how purchase will provide 20MHz for Verizon's LTE.  While this is true, it should not be confused with Verizon deploying a 20 x 20 channel.  As can be seen from the Spectrum Grid view of AllNet Labs' Spectrum Ownership Analysis Tool, Verizon is purchasing the AWS B channel and previously owned the F channel.  Although Verizon will own 20 MHz of spectrum, it is not contiguous and until they can deploy Release 12 software code into their network, they will have to operate this spectrum as two separate 10 MHz channels.  Release 12 is likely a 2015 or maybe 2016 release since operators are either planning or deploying Release 10 currently. 

The industry talks alot about Carrier Aggregation (CA) but there are several facts that are not well understood.  First, Release 10 includes the functionality for carrier aggregation but the frequency band definitions for the US are not included until Release 11.  Another point that needs to be understood is that the initial definitions require that aggregated carriers be in contiguous blocks in different spectrum bands (inter-band) or in separate blocks but in the same band (intra-band).   For Release 11, only 2 carriers can be aggregated together.  For Release 12, Verizon has sponsored a work group that will allow 3 carriers to be aggregated, 1 from the 700MHz band and 2 different carriers from the AWS band.  Thus, Release 12 will be necessary for Verizon to aggregate their two AWS blocks of spectrum with their 700 MHz LTE.


The Spectrum Grid view is sorted by the EA geographical area which show that the AWS B and C licenses have not be dis-aggregated.  The A channel licenses do show discontinuity since they were originally auctioned as CMA licenses.  AT&T through their Leap purchase will strengthen their AWS ownership in this market.

To look at the competitive picture for spectrum in the St Louis market (EA-96) we can look at the 
Company By Band worksheet from the AllNet Labs' Spectrum Ownership Analysis Tool.  Looking first at Verizon, we can see the variety of spectrum depths across the EA that Verizon indicated in their FCC filing. Verizon will range from 62 MHz to 117 MHz depending on the county.  The only county that Verizon controls 117 MHz is Montgomery County, MO which is 40 miles west of St. Louis.  

Looking at the other carriers in this market we see that US Cellular will still control between 32 MHz and 69 MHz, while AT&T with their Leap purchase will control between 61 MHz and 105 MHz.


T-Mobile controls between 40 MHz and 60 MHz with two counties at 70 MHz and Sprint with their Clearwire purchase controls between 130 MHz and 242 MHz.  





Effect of WiFi Off-loading Fri, Oct 18, 2013

For the past month I have been examining the effect of WiFi off-loading based upon my usage habits.  To do this leave WiFi turned off so my phone only receives data service from a commercial carrier network.  This was not a simple task because the Smartphone network optimizer will continue to request to have WiFi turned on and whenever you are using location services (Google+) not having WiFi provides a notification "to improve you location, please turn on WiFi".

My typical monthly data usage averages around 1.3 GB per month with WiFi enabled.  I travel infrequently and have WiFi both at home and work.  I think it is important to note that my work WiFi doesn't block YouTube, Pandora, Facebook, or WatchESPN, but I typically use a WiFi only tablet for music streaming or the watching a major sporting event e.g The America's Cup or the MBL playoffs.

In the month of September, I ran 5.7 GB of data in what I consider to be a typical work month.  What this equates to is 3.4 GB of data that was off-loaded from the carrier network to the WiFi network for which I also pay.  Another way to look at it is that my carrier only sees 1/3 of my usage.

Using some of the wholesale data rates that have been thrown around in the trade press, $5/GB; the cost to support my data usage through a WiFi Off-loading provider would be $17/month.  If I am paying my carrier $30/month for my data usage and they pay a Wi-Fi off-loading provider $17/month, they only end up with $13/month to offset their operational expenses (site leases, backhaul costs, employees...)

When you consider the "true" smartphone usage and where the majority of that traffic is handled today, it is clear why cellular carriers have been reluctant to purchase wholesale access to data or a WiFi off-loading partner.

Check back next month.  After my billing period closed, I spent the weekend out of town, so streaming two college football games on Saturday (Dish Anywhere) and 1 NFL game on Sunday will all be part of my October usage.  With just 9 days on my billing cycle, I have already consumed 3.3 GB.



Verizon's AWS Deployments Wed, Oct 16, 2013

With the news that Verizon is beginning to turn up some of their AWS spectrum with LTE, I will examine the spectrum available for those LTE deployments in the Top 5 CMAs with the Spectrum Ownership Analysis Tool.

New York:

Verizon clearly holds 40 MHz of AWS spectrum.  To see how this spectrum will affect their total LTE capacity I have evaluated the LTE channels that Verizon can deploy based on their stated direction.  Based upon Verizon's stated direction I have eliminated any 700 MHz 5x5 LTE channels, any cellular LTE channels, and any PCS LTE channels.


With this analysis, it is evident that Verizon will top out at 223 Mbps across all of the counties in the New York CMA.

Los Angeles:



 In Los Angeles, I would expect Verizon to be deploying a 10 MHz LTE channel until AT&T has shifted its LTE usage of this AWS channel to it "new" 700MHz B band holding.


 At this point Verizon is limited to 2 - 10x10 channels or 146 Mbps throughout the Los Angeles CMA.

Chicago:


In Chicago, Verizon holds a 20x20 AWS channel.


This combined with Verizon's 700 MHz C-band (10x10) channel will provide 223 Mbps throughout the Chicago CMA.

Philadelphia:



In Philadelphia, the largest channel Verizon can form is a 10x10 channel.  When AT&T gets control of the Leap spectrum assets, I would expect a three-way spectrum trade to allow Verizon, T-Mobile, and AT&T to rationalize their AWS spectrum positions.


For the throughput analysis, the additional 5x5 channel that Verizon can form in the AWS frequency band is included with the 2 - 10x10 channels (AWS and 700) for a total metro throughput of 183 Mbps.

Detroit:


In Detroit, Verizon can again form a 20x20 AWS channel.


In the Detroit CMA, Verizon can achieve a metro through put of 223 Mbps.

Verizon Re-farming PCS Spectrum Band Fri, Jun 28, 2013

Verizon announced yesterday that they will be making their PCS spectrum available for LTE in 2015.  If you are looking at a planning horizon, you could call this LTE Channel #3 for Verizon.  Channel #1 is the 700MHz C Block Channel, Channel #2 is their AWS spectrum holding, and Channel #3 is now their PCS spectrum asset.  Previously Verizon had indicated interest in Clearwire EBS/BRS spectrum which was their Channel #3 at that time, which has passed.

So what does this mean to Verizon and its customers?  First, there are a limited number of markets where Verizon lacks cellular spectrum, so the PCS spectrum carries their voice traffic.  See the Tulsa, OK, Spectrum Grid below:


 In Tulsa, USCellular owns the B-band Cellular spectrum, highlighting a potential acquisition opportunity.  Verizon holds 5MHz of spectrum in the PCS block for their voice services, along with 10MHz of AWS spectrum.

Looking at the contiguous spectrum that Verizon holds in each of the cellular market areas we see that the only market where they can create a 20x20 LTE channel with their PCS spectrum holding is in New York, NY.  For the New York market, Verizon's PCS spectrum holding would permit 4 - 5x5 LTE Channels, or 2 - 10x10 LTE Channels, or 1 20x20 LTE Channel.  Below are the results for Verizon's PCS Spectrum in Cellular markets 1-25.  The fractional LTE channels (e.g. 2.1 - 5x5 LTE in Minneapolis) are caused by summarizing the number LTE channels in each market by averaging the LTE channel count for each county in that cellular market area (CMA).

Below are the results for Verizon's PCS Spectrum in Cellular markets 25-50.  Clearly, deployment of Verizon's PCS spectrum with LTE will not provide as much additional capacity as their Channel #1 and Channel #2 plans, thus Verizon is still spectrum shopping for their 2015 LTE capacity.



T-Mobile - USCellular, Larger LTE Pipes Fri, Jun 28, 2013

T-Mobile announced an acquisition this morning of USCellular's AWS spectrum in several markets.  This was clearly foreshadowed when I analyzed the Sprint - USCellular PCS spectrum deal earlier this year.

On this chart from the Spectrum Ownership Analysis Tool, you can see the PCS spectrum in Chicago and St. Louis that Sprint acquired along with the subscribers and network.  Thus it was clear to see that USCellular's AWS(B) and AWS(E) spectrum was no longer needed.

It clearly makes sense for T-Mobile to acquire this spectrum as indicated in the chart below.  In St Louis, T-Mobile will increase their LTE Channel size from 10MHz to 25MHz and in Kansas City, T-Mobile will increase from 10MHz to 15MHz.  The chart also highlights the important spectrum position that Leap hold in the AWS band which both T-Mobile and Verizon would desire to add to their portfolio.


LTE Band Class Graphical Reference Thu, Jun 27, 2013

With AT&T's announcement that they are meeting some challenges related to testing operation between LTE Band Class 29 and Band Classes 2 and 4, I figured that many readers would appreciate a reference map for how these band classes relate to the US mobile radio and satellite spectrum bands.

All of these screenshots are from the AllNet Labs Spectrum Ownership Analysis Tool, where we display and provide analysis tools related to spectrum ownership for all of the US mobile radio and satellite spectrum bands for all 50 states and US territories. AllNet Labs Spectrum Ownership Analysis Tool

In the images below, the band classes are color coded Gray for Uplink Spectrum, Yellow for Downlink Spectrum, and Blue for Spectrum supporting Time Division Duplex.

700MHz Spectrum

SMR/Cellular/L-Band Spectrum


AWS/PCS Spectrum - Uplink

PCS/AWS Spectrum - Downlink

WCS/EBS/BRS Spectrum


LTE Carrier Aggregation - What's Going On... Wed, Feb 13, 2013

Recently I reviewed the 3GPP Standards site to check in on the status of LTE Carrier Aggregation.  I found a gold mine of information.

First a few definitions:  Carrier Aggregation allows a wireless carrier to band together different blocks of their spectrum to form a larger pipe for LTE.  This can be accomplished in two ways:  Inter-band and Intra-band.

Inter-band combines spectrum from two different bands.  The spectrum in each band to be combined must be contiguous within that band.  Intra-band combines spectrum from two non-contiguous areas of the same band.

Here is a link to an article from 3GPP that explains Carrier Aggregation.

Below is a table summarizing the relevant 3GPP working group descriptions for Carrier Aggregation.

First of all, the current network release for all carriers is Release 9.  T-Mobile, Sprint, and Clearwire have announced that they are deploying Release 9 equipment that is software up-gradable to Release 10 (LTE Advance).  From the chart, it does not appear that there are any carrier configurations planned until Release 11.  Release 10 appears to be a late 2013 commercial appearance and Release 11 will likely be very late 2014 or mid-2015.  For Carrier Aggregation to work it must be enabled and configured at the cell site base station and a compatible handset must be available.  The handsets will transmit and receive their LTE data on two different spectrum bands for the Inter-band solution.  All handsets currently only operate in one mode, 700MHz, Cellular, PCS, AWS, or 2.5GHz.

Highlights by Carrier:
Canada:  Rogers Wireless will have support for inter-band aggregation between their AWS spectrum  and the paired blocks of 2.5GHz spectrum.

AT&T: Inter-band support in Release 11 for their Cellular and 700MHz spectrum, inter-band support to combine their AWS and Cellular spectrum, as well as configuration to support combining  their PCS and 700MHz spectrum.  All of the 700MHz band plans only include their 700B/C holdings. No 700MHz inter-operability.

USCellular: Inter-band support in Release 11 for Cellular and 700MHz (A/B/C).  No support for PCS or AWS spectrum combinations

Clearwire: Intra-band support for the entire 2.5GHz band.  China Mobile is also supporting this with an inter-band aggregation between 2.5GHz and their TDD 1.9GHz spectrum.

Sprint:  Support in Release 12 for combining (intra-band)their holding across the PCS spectrum, including their G spectrum but not the un-auctioned H spectrum.  No band support for their iDEN band or the 2.5GHz band.

T-Mobile:  Support in Release 12 for intra-band in the AWS band and inter-band between AWS and PCS.

Verizon:  Ericsson appears to be supporting Verizon's need to combine (inter-band) between AWS and 700MHz C.  Not support for Verizon's Cellular or PCS holdings.

Dish:  Release 12 support to combine their S band (AWS4) spectrum (inter-band) with the 700 MHz E holdings.   This is the only aggregation scenerio for the US that combines FDD operation (AWS4) with TDD operation (700MHz E).

Carrier Plans for VoLTE Tue, Feb 12, 2013

In listening to the wireless carrier earnings calls for 4Q2012, many of the analysts are interested in the timing for offering VoLTE.  VoLTE stands for Voice over LTE, in other words, Carrier VoIP.  It is unclear whether the carriers are looking at this as a launch of a handset supporting only VoLTE or whether it is essentially a dual-mode handset providing VoLTE where the quality is acceptable and traditional 2G or 3G voice everywhere else.

There is no doubt that 4G speeds enable VoLTE and all of the other VoIP over-the-top (OTT) providers like Skype, OOMA, and GoogleTalk.  Carriers will have the ability to better control their customer experience with their VoLTE service since they can change the QOS settings because they can identify the data as a voice call.

I believe that Verizon has essentially stamped a date for their networks being 100% VoLTE for voice as the same 2021 data for shutting down CDMA.  This is a reason time frame for networks to mature so they are capable of supporting VoIP seamlessly across the carriers footprint.

A key consideration that is not openly discussed, is the fact that the traditional wireless carriers that began as wireless voice providers have only overlaid their 4G data networks on top of a network that was originally designed for voice.  This is important because capacity is impacted differently on a voice network than a data network.  A voice user, whether 100ft or 4 miles from a site, essentially consumes the same amount of voice capacity.  A data user, 100ft from the site, is capable of transmitting his data with a high efficient data modulation scheme, which reduces the capacity burden on the cell site.  A user, 4 miles from the site, will receive his data using a more robust modulation scheme with a significant cost to the site's capacity.   In this example the first user transmits his data on a train that has 64 cars for data, while the user 4 miles from the site only has 4 cars to carry his data.

How does this affect VoIP and the launch of VoLTE?  With the diagram above I have indicated the areas of each cell site that will have high, medium, and low capacity based upon their voice network design.  These are the areas that VoIP voice quality will suffer due to lack of coverage or capacity.  With each carrier only offering LTE on one channel, the option to add additional spectrum to solve the capacity issue is not available.  Carriers are pursuing small cell solutions to meet this capacity need but it will require extensive time to mature the networks to support VoLTE and VoIP on a standalone basis.

LTE Broadcast - What is the problem with video? Wed, Jan 23, 2013

Verizon's announced last week that they were looking into broadcasting multicast video utilizing the LTE Broadcast feature, known in the standard as EMBMS - Evolved Multimedia Broadcast / Multicast Service.  After watching a video interview by Dan Meyer with RCR Wireless with Lynette Luna from Current Analysis I thought a short description of the challenge of multicast video would be in order.


The goal transmitting multicast video is to limit the number of unique video sessions that are coming into your network, loading your switches, routers, cell site backhaul, and finally cell site RF capacity.  In the diagram above I have shown Netflix/You Tube video traffic in red.  From Dan and Lynette's conversation, this would be considered Over the Top (OTT) video, essentially video not provided or managed by the network carrier.  With 3 handsets all receiving a unique You Tube video or Netflix movie, there are 3 streams of video capacity (red circles) used at the market switch (2 are shown).  The South Market Switch still is burdened with 3 video streams.  The backhaul to the 1st cell site on the South market switch is still carrying all three video streams, but since no users are on the 1st cell site, no RF coverage is consumed.  The link between the 1st and 2nd site still carries 3 video streams while the link between the 2nd and 3rd site only carries 2 video streams. 

Looking at the North Market Switch we can see what is desired with multicasting video.  The key is to realize that this video is synchronized for all users like a live sports game or a broadcast television program that starts at the same time for all users.  The network will have the intelligence to recognize that multiple users are requesting the same video stream and it will only set it up once on each switch, cell site backhaul, and cell site that has a user requesting the service.  You can see that there is one site off the North Market Switch that does not have a Live Broadcast User, thus neither the site or the site backhaul would be carrying that video stream, eliminating that required capacity.

I see this as a limited offloading opportunity.  US Consumers have been trained with DVRs to timeshift TV viewing and to utilize Quickskipping to eliminate commercials.  For consumers, applications like Dish Anywhere which allows me to record my programs, including Live Sports, and send them to my handset when I want to start them, will continue to be very popular.  This would be an OTT video example that I gave above.  Wireless carrier's could enable DVR functionality in the handset, allowing the customer to pause the live broadcast at their handset and continue playback at their convenience, but that is an expensive handset that doesn't exist today. 



T-Mobile (Deutsche Telekom Capital Markets Day 2012) Fri, Dec 07, 2012

There were several interesting details that came out of the Deutsche Telekom Capital Markets Day 2012.  The primary announcement concerned T-Mobile USA being blessed with the ability to sell the iPhone.  T-Mobile's new CEO, John Legere indicated that it will have a dramatically different experience than the other iPhone on the market.  In addition T-Mobile will sell it unsubsidized, although they will offer financing plans.  This should continue to drive T-Mobile's Cost Per Gross Add (CPGA) down, although they didn't disclose if this only affects their iPhone retail business or potentially all of their retail.  This is a dramatic step which eliminate the primary issue that I have had with the subsidy pricing model.  I have a problem with paying the same monthly rate for my smartphone if I am out of contract as the guy that who just got a new device.  With T-Mobile's plan the true cost of upgrading will be carried by the customer, with the expectation of lower monthly rates.



Above is a restatement of the testing data from PC Magazine which T-Mobile released.  It is interesting to note how far their speeds have fallen from their early announcements in late 2010 concerning the HSPA+ network.  It is also worth noting that they compared AT&T's LTE network.  You can again see the loading effect on the network.  AT&T's Chicago network was launched September 2011 so it has been loading for over a year reflecting the slower speeds.  AT&T's complete New York and San Francisco networks are much newer, launching September 2012, thus carrying less traffic.  I am curious why T-Mobile did not chose to compare themselves to AT&T's 4G (HSPA+) network.

From a LTE network build perspective, this was the first time I have heard clearly that T-Mobile is deploying tower top electronics.  It is interesting that they state that they are the first carrier in North America to broadly deploy radio-integrated antennas.  Clearwire was the first carrier to deploy tower top base stations, followed by Sprint with their Network Vision project.  T-Mobile is playing up the fact that their radios are some how integrated into the antenna.  Not really an earth shattering announcement.  From a technology perspective, deploying the tower top base stations will fill in coverage holes and improve data speeds so it is a good move.  In addition, these base stations will be Release 10 capable, meaning a software update will move these radio from the LTE features to the  LTE Advance features.

The Numbers:

  • Current 4G Network covers 225 million POPs
  • Release 10 Equipment being deployed to 37,000 cell sites
  • T-Mobile and MetroPCS:  Migration not Integration
  • With MetroPCS Spectrum Position across Top 25 service areas is improved by 21%
  • Planning to shutdown 10,000 macro sites from MetroPCS
  • Retain and integrate 1,000 MetroPCS sites
  • Operating MetroPCS Markets
    • San Francisco 
    • Detroit
    • Boston
    • New York
    • Dallas
    • Atlanta
    • Florida (except panhandle)
  • MetroPCS brand will increase coverage from 105MPOPs to more than 280MPOPs.

What is wrong with Spectrum Pricing? Tue, Dec 04, 2012

Clearly the wireless industry has locked in spectrum pricing with the MHz-POP pricing model, but is this the right way to look at it as we move into a 4G World where data throughput and capacity are key?  For those that aren't familiar, the typical value of spectrum is determined by the $/MHzPOP which is the dollars spent for the spectrum divided by the total amount of spectrum times population that spectrum covers.  This model falls short now as carriers are interested in acquiring larger contiguous blocks of spectrum enabling higher users speeds and more capacity.

To use a real estate analogue, a large plot of land is much for flexible for multiple uses, than two plots, even if they are in the same neighborhood.  In real estate, the developer that is able to consolidate several tracks of land into a larger development is rewarded as he sells the larger development.

In the wireless industry, we continue to price based upon the $/MHz POP basis, even as carriers such as T-Mobile and Clearwire have combined adjacent channels to create larger bands of spectrum to utilize in larger LTE channels.  T-Mobile has worked this year with Verizon, SpectrumCo, and MetroPCS which will allow it to assimilate a 2X20MHz LTE channel on a national basis.  Clearwire has leased and purchased operators in the BRS and EBS spectrum bands providing it with an average of 160MHz of spectrum in the top markets.  Since Clearwire's spectrum has many geographical boundaries, it is difficult to say how many 20MHz channels they could support across each of their markets, but they have been successful consolidating small bands of spectrum into larger more flexible spectrum bands.

How does a larger band of spectrum affect the wireless carriers?  In the US, carriers have deployed FDD-LTE in 1.25MHz channels, 5MHz channels, and 10MHz channels.  As you increase the channel size throughput performance improves because a lower percentage of the data packets are dedicated to overhead activities   Qualcomm has provided achievable LTE Peak Data Rates for different channel bandwidths based upon whether the antennas are 2x2 or 4x4 MIMO.

Link to Qualcomm Document



As you can see in the 4x4 MIMO downlink case, the throughput is 12Mbps greater in the 20MHz channel than the composite of 4-5MHz channels.

So if a  20MHz channel is 4% more efficient than 4 - 5MHz channels should the MHz POPs pricing adjust accordingly?

By the way.. I am going to look for more source data on the capacity improvements for wider channels, a 4% improvement would seem to be relatively negligible.  I recall hearing 30% improvements in capacity when a channel size is doubled, but I haven't been able to re-source that data for this blog.   More to come.

my wishlist